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Abstract—Several examples of racemization process at a quaternary carbon center affecting Michael adducts were reported. A
brief statement to prevent the occurrence of the interfering retro-Michael reaction was also presented. © 2001 Elsevier Science
Ltd. All rights reserved.

Since its discovery, in the mid 1880’s, the Michael
reaction has been extensively explored, and has played
an amazing role in the area of synthetic organic chem-
istry. In the past two decades, much progress has been
made in the development of asymmetric variants of this
reaction, allowing the elaboration of Michael adducts
of high enantiomeric purity. These efforts have culmi-
nated in the synthesis of a variety of adducts of
paramount importance, which possess one stereocon-
trolled quaternary carbon center. However, although it
is generally accepted that the configuration of a quater-
nary carbon center was definitively secured by the
mechanism-based stereoselectivity (kinetic control), a
subsequent racemization of adducts involving a tran-
sient retro-Michael process cannot be ruled out.

Here, we present several examples of the racemization
process at a quaternary carbon center affecting Michael
adducts. Although the reported cases deal with com-
pounds which are prone to racemization, one should
keep in mind that this phenomenon might affect any
Michael adduct.

With the aim to extending the scope of the asymmetric
Michael reaction using �-thiosubstituted secondary
enamines,1 we recently envisioned the utilization of

�-sulfenylenamine (R)-2 as a nucleophilic partner. This
enamine resulted from the condensation between 2-
phenylthio-1-indanone (1) and enantiomerically pure
(R)-1-phenylethylamine (cat. p-TsOH, refluxing tolu-
ene). Addition of crude 2 to methyl vinyl ketone
(MVK) (THF, 48 h at 20°C) gave, after hydrolytic
workup (10% aqueous AcOH, 90 min at 20°C), Michael
adduct 3 as a colorless solid in 81% yield. When freshly
prepared, compound 3 exhibited a significant optical
rotation ([� ]D=−87, c=2.5, MeOH), but, neither its
absolute configuration (presumably S, as depicted,
deduced from mechanistic considerations), nor its ee
could be assigned at this stage. Conversely, addition of
enamine (ent)-2, deriving from (S)-1-phenylethylamine,
to MVK afforded adduct (ent)-3 ([� ]D=+79, c=2.5,
MeOH) (Scheme 1).

Scheme 1.
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Figure 1. X-Ray crystal structure of adduct (±)-3. Top:
ORTEP drawing of the molecule (shown in the S configura-
tion) with displacement ellipsoids at the 30% probability level.
Bottom: Crystal packing viewed along the a axis (color code:
sulfur, yellow; oxygen, red).

Unexpectedly, when the above enantiomeric adducts
were kept in the solid state at room temperature, their
optical rotations progressively faded, and vanished
within a few weeks.2 That compounds 3 and (ent)-3
suffer racemization on standing without destruction of
the crystal lattice, was highlighted by X-ray diffraction
analysis. Indeed, the ‘aged’, optically inactive crystals of
both origins displayed the same diffraction pattern,
revealing a centrosymmetric space group (P1), and the
presence of a pair of enantiomers per cell unit (Fig. 1).3

On the other hand, we have established that a sample
of Michael adduct (S)-5, of 95% ee, resulting from the
addition of �-sulfenylenamine (S)-4 to MVK, remained
unaltered on standing at room temperature.1 Therefore,
the unusually facile racemization of adducts 3 and
(ent)-3 should be clearly attributed to the presence of a
fused aromatic nucleus which enhances the acidity of
the starting �-phenylthiocyclanone, the retro-Michael
process thus being favored (Scheme 2).

A closely related racemization process has been
observed with adduct (R)-8, issuing from the conjugate
addition of 2-carbomethoxy-1-indanone (6) to MVK, in
the presence of polymer-supported quinine (7) as a
catalyst.4 We have indeed proved that a freshly pre-
pared sample of (R)-8, of 87% ee, completely racemized
within a few weeks, when kept in the solid state at
room temperature. Noteworthy, it was also established
that adduct 8 racemizes during liquid chromatography
on a chiral stationary phase, as well as during NMR
experiments, when a chiral lanthanide shift reagent was
added (Scheme 3).

A misguided experimental protocol, source of retro-
Michael process, can affect the reliability of an asym-
metric Michael reaction. Thus, in the early 1990’s,
Guingant et al. disclosed the conjugate addition of
chiral �-enamino esters, derived from 1-phenylethyl-
amine, to electron-deficient alkenes (alkyl acrylates,
�,�-ethylenic ketones, acrylonitrile).5 Ees in the range
of 55–90% were reported. However, the purification
procedures of the Michael adducts having always
included a distillation step, we hypothesized a compet-
ing thermal racemization, decreasing the ees. Correct-
ness of this assertion was proved as follows. Addition
of �-enamino ester (R)-9 to methyl acrylate furnished
the Michael adduct (R)-10 with a 95% ee.6a As
expected, after careful distillation under reduced pres-
sure, the ee of this adduct was significantly lowered.
The fact that a retro-Michael process occurs during
distillation was emphasized by the concomitant forma-
tion of a noticeable amount of methyl acrylate. There-
after, several cyclic or acyclic �-enamino esters of the
type 9 were condensed with various electrophilic alke-
nes.6a–g Ees of the resulting Michael adducts were invari-
ably=95% (Scheme 4).

The retro-Michael process can also modify the regio-
chemical features of an asymmetric Michael reaction.
Thus, we have shown that the addition of chiral imine
11, deriving from 2-methyldihydrofuran-3-one and (R)-
1-phenylethylamine, to MVK afforded a mixture of

Scheme 2.

Scheme 3.
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adducts (12+13+14).7 Incidentally, it was observed that
the conjunction of an excess of MVK and an extended
reaction time results in the gradual disappearance of
the monoalkylated regioisomers 12 and 13, for the
benefit of the gem-dialkylated adduct 14. The unex-
pected conversion [12�14] firstly requires the isomer-
ization of quaternary adduct 12 into regioisomer 13, a
rearrangement which involves the migration of the
incoming butanone appendage from the more substi-
tuted �-side of the imine function to the less substituted
position. Finally, the regioselective addition of a second
molecule of MVK to compound 13 furnishes the
dialkylated adduct 14 (Scheme 5).

In conclusion, we have demonstrated that an interfering
retro-Michael process can affect the stereochemical/
regiochemical features of Michael adducts bearing a
stereocontrolled quaternary carbon center. Neglect of
reversibility in the area of asymmetric synthesis results in
the collection of senseless data and the drawing of mis-
leading conclusions. Some of the most important guides
to prevent the occurrence of retro-Michael process are
listed below.

1. Select the mildest possible way for synthesizing
Michael adducts.

2. Avoid any strongly basic/acidic workup.
3. Restrict the use of purification procedures demand-

ing prolonged heat exposure (e.g. distillation step),
and shorten the contact of adducts with highly polar
chromatographic media (e.g. silica gel).

4. Be careful in utilizing chromatographic methods for
the determination of ees, particularly the chiral GC.


